A survey on extensions of Riemannian manifolds and Bartnik mass estimates

نویسندگان

چکیده

Mantoulidis and Schoen developed a novel technique to handcraft asymptotically flat extensions of Riemannian manifolds ( Σ ≅ mathvariant="double-struck">S 2 , g stretchy="false">) (\Sigma \cong \mathbb {S}^2,g) , with alttext="g"> encoding="application/x-tex">g satisfying alttext="lamda 1 colon-equal lamda left-parenthesis minus Delta Subscript Baseline plus K right-parenthesis greater-than 0"> λ<!-- λ <mml:mn>1 ≔ −<!-- − mathvariant="normal">Δ<!-- Δ <mml:mo>+ K &gt; 0 encoding="application/x-tex">\lambda _1 ≔\lambda _1(-\Delta _g + K(g))&gt;0 where 1"> _1 is the first eigenvalue operator alttext="minus encoding="application/x-tex">-\Delta _g+K(g) alttext="upper encoding="application/x-tex">K(g) Gaussian curvature control on ADM mass extension. Remarkably, this procedure allowed them compute Bartnik in so-called minimal case; notion quasi-local General Relativity which very challenging compute. In survey, we describe Mantoulidis–Schoen construction, its impact influence subsequent research related estimates when minimality assumption dropped, adaptation other settings interest Relativity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Mass Transportation on Sub-Riemannian Manifolds

We study the optimal transport problem in sub-Riemannian manifolds where the cost function is given by the square of the sub-Riemannian distance. Under appropriate assumptions, we generalize Brenier-McCann’s Theorem proving existence and uniqueness of the optimal transport map. We show the absolute continuity property of Wassertein geodesics, and we address the regularity issue of the optimal m...

متن کامل

Gradient Estimates for a Nonlinear Parabolic Equation on Riemannian Manifolds

Let (M, g) be a complete noncompact Riemannian manifold. In this paper, we derive a local gradient estimate for positive solutions to a simple nonlinear parabolic equation ∂u ∂t = ∆u+ au log u+ bu on M × [0,+∞), where a, b are two real constants. This equation is closely related to the gradient Ricci soliton. We extend the result of L. Ma (Journal of Functional Analysis 241 (2006) 374-382).

متن کامل

On Estimates for Fully Nonlinear Parabolic Equations on Riemannian Manifolds

In this paper we present some new ideas to derive a priori second order estiamtes for a wide class of fully nonlinear parabolic equations. Our methods, which produce new existence results for the initial-boundary value problems in R n , are powerful enough to work in general Riemannian manifolds. Mathematical Subject Classification (2010): 35K10, 35K55, 58J35, 35B45.

متن کامل

Gradient estimates for the Fisher–KPP equation on Riemannian manifolds

*Correspondence: [email protected] Department of Applied Mathematics, College of Science, China Agricultural University, Beijing, P.R. China Abstract In this paper, we consider positive solutions to the Fisher–KPP equation on complete Riemannian manifolds. We derive the gradient estimate. Using the estimate, we get the classic Harnack inequality which extends the recent result of Cao, Liu, Pendle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Contemporary mathematics

سال: 2021

ISSN: ['2705-1056', '2705-1064']

DOI: https://doi.org/10.1090/conm/775/15586